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Q1. Show that for z, w ∈ C, we have
|(wn − zn)− nzn−1(w − z)|≤ n(n− 1)|z − w|2.(max(|z|, |w|)n−2)
for n ≥ 2.
Hence deduce that any power series can be differentiated term by term within its disc of convergence.

A1. If w = z, then the inequality holds trivially.
Assume that w 6= z. Then
|(wn − zn)− nzn−1(w − z)|
= |(w − z)(wn−1 + zwn−2 + · · ·+ zn−1)− nzn−1(w − z)|
= |w − z|.|wn−1 + wn−2z + · · ·+ zn−1 − nzn−1|
= |w − z|.|(wn−1 − zn−1 + z(wn−2 − zn−2) + · · ·+ zn−2(w − z))|
= |w − z|2.|(wn−2 + wn−3z + · · ·+ zn−2) + z(wn−3 + wn−4z + · · ·+ zn−3) + · · ·+ zn−2)|
≤ |w − z|2.(max(|z|, |w|)n−2((n− 1) + (n− 2) + · · ·+ 1)

= n(n−1)
2 |z − w|2.(max(|z|, |w|)n−2)

≤ n(n− 1)|z − w|2.(max(|z|, |w|)n−2).

Suppose that
∑

anz
n has radius of convergence R. Then we know that

∑
nanz

n has also radius of convergence
R. Let f(z) =

∑
anz

n. Then for some |h|< δ and |z|, |z + h|< R we have,

| f(z+h)−f(z)
h

−
∑

nanz
n−1|

≤
∑

|an||
(z+h)n−zn

h
− nanz

n−1|

=
∑ |an|

|h| |(z + h)n − zn − nzn−1h|

≤
∑ |an|

|h| n(n− 1)|h|2.(max(|z|, |z + h|)n−2) (using the proved inequality)

=
∑

|an||h|n(n− 1)Rn−2

≤ |h|
∑

|an||n
2Rn−2.

Now, lim sup(|an|)
1

n = 1
R
, so lim sup(|nan|)

1

n = 1
R

and also lim sup(|n4an|)
1

n = 1
R
, so for some N , we have n ≥ N ,

n2|an|≤
1

Rnn2 .

Therefore,
∑

n≥N |an|n
2Rn−2 ≤

∑
n≥N

1
R2n2 . So, the series

∑
|an|n

2Rn−2| converges and so | f(z+h)−f(z)
h

−
∑

nanz
n|→

0 as |h|→ 0. Hence, f ′(z) =
∑

nanz
n−1.

Q2. Prove that a non-constant analytic function has no local maximum for its modulus. Deduce that all its local
minima are zero.

A2. The first part is the statement of Maximum Modulus Principle. Consult any book on complex analysis for the
proof.
Suppose, z0 is a local minimum for its modulus, where the value is not 0. Then, we shall get a neighbourhood of z0,
where the function is non-zero. Then, if we consider the function 1

f(z) , we shall get an analytic function on the open

set, which has a local maxima at z0, which is clearly a contradiction to the maximum Modulus Principle. Hence, all
its local minima are zero.
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Q3. Prove ab initio that there is a θ > 0 such that eiθ = 1.

A3. eiθ = 1 implies cos θ = 1, sin θ = 0. Then we have θ = 2π for which cos θ = 1, sin θ = 0 or eiθ = 1.

Q4. If Ω is a convex domain then show that every holomorphic function on Ω has an anti-derivative.

A4. In fact, the result is well-known for a simply connected region. As a convex domain is a simply connected region,
we have the result. For the proof for a simply connected region, see p.119, Complex Analysis by Serge Lang, Third
Edition.

Q5. If f : Ĉ → Ĉ is analytic then show that f is a rational function.

A5. Let f be a non-constant function. Since, f is meromorphic, so f(z) and f(1
z
) have finitely many zeroes and

poles (each of them is of finite order) on the closed unit disc. And as the zeroes and poles of f(z) outside the open
unit disc correspond bijectively to the poles and zeroes of f(1

z
) on the closed unit disc, so f(z) have finitely many

zeroes and poles, each is of finite order.
Let a1, a2, · · · , ak be the zeroes of f with corresponding orders n1, n2, · · · , nk. Let b1, · · · , bl be the poles of f with
corresponding orders m1, · · · ,ml.

Let g =
∏k

1
(z−ai)

ni

∏
l
1
(z−bj)

mj
.

Let h = f

g
. So, h : Ĉ → Ĉ is function, which has no zeroes and poles. So, h extends to a non-zero bounded entire

function, so h = c, where c ∈ C− {0}. Therefore, f = c.
∏k

1
(z−ai)

n
i∏

l
1
(z−bj)mj

. Hence, f is a rational function.


